Following the he(a)rd: How much should we trust the crowd when it comes to quality in audio?

Audio quality research often involves manipulating a known facet of a recording (such as distortion level, bit rate, and so on) and seeing what effect it has on people’s ratings of quality. Unfortunately however, the simple act of requesting a rating of quality can change the way people would normally listen to the recording. Recently we’ve been considering alternative ways of approaching this problem.

If, for instance, we could find another measure that predicted quality reasonably enough we might not have to ask directly for people’s ratings. And if this implicit measure of quality could be found quickly and freely, in data that already exists, we might have any number of new and exciting avenues to pursue.

Continue reading